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ABSTRACT

This work considers the presentation of equations for the perturbed motion of an airplane in

the form of single-loop block diagrams. A brief analysis is given of the characteristics of the in-

dividual links and of their change with changing flight speed and altitude. A derivation of trans-

fer functions for control with elevator, rudder, and aileron is presented, as well as simplified ex-

pressions for the transfer functions, depending on the frequency range, which correspond to break-

ing up the perturbed motion into simple types.

The representation of the equations of perturbed airplane motion in the form of single-loop

block diagrams permits a simple and easy application of contemporary methods of control theory

to the analysis of airplane motion, and also allows rapid formulation of simplified equations of

motion and transfer functions applicable during control with the control elements.

INTRODUCTION

In the last 15 to 20 years the theory of automatic control has reached a very high degree of development.

The methods of this theory permit one, on the basis of physical ideas, to analyze relatively simply and conven-

iently, the stability and nature of the transmission characteristics of dynamical systems. This refers in particular

to systems which are represented in the form of single-loop diagrams consisting of simple links [3].

However, this progress of the general theory has hardly made contact with the theory of dynamic aircraft

stability, either with autopilots or without them. lust as it was 20 years ago, stability calculations are conducted

by classic methods through investigation of the roots of characteristic equations, which requires length), calculation

and still does l_ot allow the assignment of a physically simple and easily perceived representation of the process of

control and steering of aircraft.

Only in the very recent past have a few works dedicated to these questions appeared. From the Soviet

literature, the book by L V. Ostoslavskii and V. S. Kalachev should be pointed out. Basically, this book applies

frequency methods to the analysis of short-period lor_gitudinal oscillations. Work by Spearman and some others

(see list of references) presents the theory of transfer functions and frequency characteristics of aircraft for cases

of rapid motions about the center of gravity.

However, all these works are either limited to the analysis of individual types of motion, or they are based

on simplifying assumptions which are mostly unproven and occasionally wrong. But there does exist the possibility

of a complete analysis of airplane motion which does not include any unfounded assumptions and encompasses all

types of motion. It is possible to represent the equations of motion of an airplane in the form of a simple block

diagram, in which it is easy to apply modern methods of control theory: circuit analysis, frequency methods,

theory of compensating networks, etc. This report is devoted to those problems.

Any system of linear differential equations with constant coefficients can be represented in the form of a

block diagram; however this diagram usually turns out tO be multi-loop. It is difficult to apply the methods of
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control theory to such a diagram. On the other hand, any system can be represented as a single-loop dia-

gram: however the links of such a system will be devoid of physical meming. Therefore, in our work we

attempted to present the system of equations of perturbed motion in such a form that it could be expressed

by a single-loop diagram with links of the first or second order, and with signals having a simple physical

meaning at the input and output of the links.

This work is not claimed to be a complete analysis of perturbed airplane motion through single-loop

block diagrams. It is intended to point out the possibility of such a representation, and to show its advan-

tages. Therefore, to illustrate the proposed method only airplanes with "conventional" characteristics are

considered. In particular it is assumed that the airplane possesses suffici.-nt longitudinal static stability, direc-

tional stability, etc.

In analyzing the perturbed motion of an airplane, we will not mak_ any assumptions except those which

are normally made in the theory of dynamic airplane stability [1, 2]. In particular we shall always assume that

the equations of motion are linearized. Separate simplifying assumption_ will always be pointed out in the

appropriate places, and their use justified.

We note, however, that all the discussion and conclusions of this work are applicable only in the case

when the initial unperturbed motion takes place in the symmetry plane of the airplane. In particular, in the
initial motion

_= _=®_-----%----0. (1)

The authors express their deep gratitude to Doctor of Technical Sc ences M. A. TaRs and engineer E. N.

Arsoh*ev, who made many valuable comments during the preparation of his work, and also to the technicians

L. N. Frolova, A. S. Verevkina and K. A. Lapshina, who performed all the'. calculations and editorial work.

SYMBOLS

t - time

d
p -Laplace operator; in this work p- dt

W (p) - transfer function of a link or system of links

m - mass of the airplane

ct - angle of attack at the center of gravit)

$ - angle of sideslip at the center of gravi y

H - flight altitude

, 8, y - angles of yaw, pitch, and bank

6 - angle of inclination of the trajectory t,) the horizontal

V - velocity of the airplane's center of gravity

tOx, wy, tOz - projections of angular velocity along tim airplane axes
I

y _-- cr?St,_ - lift force

I

Q='2 c._SV'-'

P

X-Q- P

- drag

- thrust

- braking force (net component of all ae'odynamic forces, including thrust,

along the tangent to the trajectory)
I !

lt,L = -2 m'_'SV't I
1

'_L' = -_ m:; SV_l }

, I

* Coordinate axes x, y, z originate at the center of gravity and are dire_ ted along the principal axes of the

airplane. AxisOx-forward, axis Oz-to the right, axis Oy-4,'upward, perperdicular to Ox and Oz.

components along the principal axes of the plane, of the moment of the

aerodynamic *forces including the thru,t, taken about the center of gravity.



1
Z_ 72 cz?SV_

l

b

2m

_-Sb

2#t

pSI

2m

pSV

- Lateral compouent of aerodynamic forces along the z axis

- wing span

- chord length (average)

relative longitudinal density of the airplane

relative lateral density of the airplane

..... unit of time reduced to dimensionless form

r, :=--f V _ , r,,= l V -ran ' r,=- -f V-_[ " - dimensionless radii of gyration

to - frequency of oscillations

- relative coefficient of damping of a second order link

k - amplification factor%f a link or system of links.

The subscript indicates the derivative with respect to the parameter in the superscript. For exampl%

Zp _._flZ.

* Translator's Note: Many Americans would prefer to call k simply the "value of the transfer function at zero

frequency." Tile term "amplification factor" is particularly misleading in cases where the input and output quan-

tities have different dimensions and hence are not directly comparable.
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in which k t = A-_ is the amplification factor* of link I;

At is the relative damping coefficient;
_1 = 2_ A o

I

T t = _--Ao is the time constant of the link; and

1
is the reference frequency of the link.

ta t = TI

It is easy to see that k I is directly proportional to the square of tie time unit r z, that is, inversely pro-

portional to the squares of the flight velocity and air density.

The reference frequency of link I increases, other conditions beilg equal, in direct proportion to the flight

velocity and decreases with decrease of the density p. The relative damping coefficient tt does not depend

directly on the speed, and decreases almost proportionally to vcp.

The expanded expression for the transfer function of link II has tle following form:

1
w_ (p)

First of all it is importavt to note that the reference frequency of link tl

o,=l/I(- M_- 2 x

does not depend directly on the velocity• It can vary only with the Mach number M. Therefore, the frequency

ratio of links I and II will increase with increase of flight speed. The :ame Can be said of the amplification

1
factor k I : --.

The frequency w t decreases proportionally to the decrease of fpp, that is, it decreases with the increase

in altitude, and the amplification factor k t increases with the decrease of p, in inverse proportion.

At some sufficiently large angle 0 we can have the equation

.,M M

t-go-
,a4' M

e.,+--_-c=

and, therefore, the decrease of ta t down to zero: with the further increase of 0, link I1 becomes unstable. The

amplification factor kt will increase to kt : co (ta t = 0) with the increase of 0. Therefore, the expression of

the transfer function in terms of k, T and _, as accepted in control th,ory is not always convenient, because

in airplane dynamics it is frequently necessary to deal with unstable links and with the consequent difficulties

of interpretation of indeterminate quantities containing 0 and co.

In particular, the relative coefficient of damping

"_See translator's note, p. 8.
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depends on V. p and 0in a very complex way.

In this case the damping of link II can be evaluated more simply through the damping coefficient of the

natural motion of link H, which is equal to half the coefficient of p and time, during which the natural oscilla-

tion decreases by the factor e _ 2.718.

The damping coefficient of link H for the aerodynamic data assumed for the calculation has following

magnitude:

for the altitude H = 5,000 meters

[0,022 + 069 0,019_ 0,0751-222 9.81 sin 0 = 0,01411-- 0,0441 sin O,
k 2 / 3,3,7 222

for the altitude H = 12.000 meters

0,032 +_-_0,081) 0,0317.222 9,81 stn 0=0,0134--0,0441 sin0.3,3,7 222

Thus it is obvious that with increasing angle of climb, the damping of link II decreases, and at 0 =

= 38 ° - 19" link H becomes unstable, the natural motion being an increasing oscillation. This explains to a

great degree the stability deterioration during a climb [1, 2].

During horizontal flight 0 = 0 and the damping of link II is directly proportional to flight speed and air

density 19. During a climb or descent, there appears in the damping coefficient a third term. which decreases

the damping during ascent and increases it during descent, in both cases in inverse proportion to the flight speed.

pY

The second term -- for subsonic and trans-sonic planes with turbojet engines is small and unimportant.
fn

However, with increase of speed, the derivative of thrust pV i_p
= _-ff of jet engines increases considerably; there-

fore, the damping of link H will decrease. It is conceivable that at high flight speeds this link can become un-

stable, or the stability will be so low that an artifical damping of the long period motions will become necessary.

for example, by an automatic device which affects the thrust by an amount depending on the speed change dur-

ing the oscillations.

The transfer function of link HI has the following form:

lle,(p)=-[c:s W,_-_ q-_,+ (_, cos e- c: ,ms) _-'. s]-sPv_

The expression Ws (p) can be conveniently represented in the following form:

Where UZ)(p)= -_ irw + 11.

is the amplification factor of link III;

7_....
,,,_ c_cos0 -c_s, 0 g
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is the time constant of this link.

it is easy to see that the time constant T 3 of the link increases in d_rect proportion to flight speed.

ing horizontal flight 0 - 0 and therefore

c_', g Ocy g

Dur-

that is,T_ is determined in this case by the tangent of the angle formed ky the tangent line to the polar curve*

for the plane (at M : const). With increasing angle0 during a climb, th_ denominator begins to decrease, and
of

at a very large angle 0 = arc tan Cy it becomes zero; at the same tine, the amplification factor k3 decreases

C x

in the same proportion. In order to see clearer the changes in characteri;tics of link III, let us express its trans-

fer function in a different form:

_t; (p) = k T::(,,,+ _);

o_ S pV 2
here the quantity kaT a = c x --_n 2

link

X o_

in
does not depend on the angl#9. T}le reference freq(mncy of the

,,r 3

CX

is inversely proportional to flight speed. During a climb with a very laqe angle 0 - arc tan Cy the reference

o_

C x

frequency becomes zero; at this angle of ascent lillk III becomes a pur,:ly differentiating link of the first order

X a
with an amplification factor of - ---, and with further increase of angte 0 link III becomes unstable.

m

Because of tile decrease of reference frequency of iink fit with increase in velocity, its frequency charac-

,eristics are displaced towards the low-frequency side.

In the general case link IV is a differentiating link of the second { rder

t__ ( }.v ,'.l7, zg,J\ :iP,"_v,,(p) = ,,_- -t ;, ,,Vcosl, {- G-7) p+ &

=_p:. Ig tj

__ M c,_f- c.+7" ', lgO .... .+ > tn_I sH-{'+m'", cy+ 72 _,
'_ ,re '2mJ z

At 0 = (! ti_is link becomes a link of first order. It is easy to see tmt reference frequency of such a link

increases in proportion to the flight velocity and decreases with decreas:ng air density.

Frequently the total aerodynamic moment depends only to a sma][ degree on the Mach number M, that

is, mzN _. In this case we obtain a quadratic expression which canea ily be factored:

l t,ZL._V, ,v0 l( M c"_- M c.)tg01 _}tG(l,)= l'-m;'" 2J. I p 7-- cy4--_ _] c.+ 2 '

*TraHslator', Note: curve Of Cy versus c x.
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Therefore, when .mM : 0, link IV represents the tandem combination of links of first order with transfer functions

- b2pS V,
W' 4 (p) =p--m_'z 2J--_

_1"_(p) = p -v- c,,+ _ cM 0-- 2 Y Cx-[- 2 C_. lg rn--"

The first of these links is the same as link IV at 0 = 0, but without the multiplier

_,=__rc +Mcy)Sp, _- , _-.

At 0 = 0 the secon:l link becomes a purely amplifying link with the amplification factor k 4. Conditional-

ly we can consider this link as hiving infinite frequency; at 0 # 0 its frequency becomes finite and equals

/ /_I M 1o:- )ls ".
With increase of angle 0 this frequency decreases rapidly and can become equal to the frequency of

the first link

,0_= _ roT-" b'ps V.
2J_

At small angles 0 the frequency w 4" is large and this second link can be regarded as amplifying.

other words, at small 0 we can consider link IV as being identical to link IV at O = 0.

j i

t t-- ....
-.qO - if0 -50 0 30 60 _000

Fig. 4. Yhc influence of the angle 0 of inclination of

the trajectory, upon the frequencies of link of the sta-

bilization loop. Altitude 12 kilometers.

In

At large angles 0 the frequency of link IV'

remains unchanged, but the frequency of link IV"

decreases rapidly. Figure 4 shows the change in

frequency of all links of the stabilization loop with

change of the angle 0 , calculated for our example

(H = 12 kilometers). Frequencies w 1 and to_ prac-

tically do not change; frequencies w_ and to 2 change

insignificantly. A particularly large change takes

place in the frequency w_', which drops from a_a in-

finitely large value at 0 = 0 to 0 atO = :_90 °.

In the case MVz :_: 0 (when the Math number

M influences the coefficient mz) the analysis be-

comes more complex, but even in this case the same

relations are still valid: link IV can usually be ex-

pressed in the form of two links of the first order

connected in tandem; here at small 0 the second

link has a high frequency and we can practically con-

sider link IV as a link of first order with the transfer

function

yV X v tg 8 Mr-v
v_q(p).._ p +_.

mV J.

For large values of 0 the reference frequency.el

will ci2ange negligibly, but the reference frequency

w_ will drop from infinity to 0.



Letus consider link V. When expanded the transfer function of thi: link will have the following form:

s,v +.- Y )w_O')=_VP + _--=_, G; P 2 //_-_ -=

[ ( M M_c_)_.(c,+ M ,,)]2=5}.,,+_ c; Cx4--2-cx c= -gc, --#,
dP

dv is a coefficient for the derivative of engine thrust with respect to speed.
where c_ SpV

It is convenient to represent this link in the form

_ (p)=k, Irw+ ll----k_r, lp +-,1,
where

1 M

is the reference frequency of the link and

is the amplification factor of link V.

Tile natural frequency _ increases proportionately to the speed and decreases proportionately to the air

density. The amplification factor of link V increases proportionately to the square of the speed and decreases

proportionately to the square of the air density.

In the fonnulas for _os and k s the expression in parentheses call beco ne zero at certain speeds and alti-

tudes. If we disregard the influence of Mach number M on changes of the coefficents c x and Cy and also ne-

the coefficient c_, then at a certain angle of attack the following ,:quatton willglect apply:

cy _ c_ _Ocy

Cx C_. OCt "

In this case we will have A(a. V) : 0. that is. link V will become: purely differentiating with ampli-

y_X

fication factor m--'V-; at even larger angles of attack the quantity A(cq _,) will become negative, i. e., link

V will become unstable. The quantity A(a, V) becomes zero at an angle ,4 attack which corresponds to the opti-

[nunl tegilne.

For coutemporat 3, supersonic planes with jet engines the coefficient coV >0 and reaches considerable mag-

nitude. The influence of Mach number M on coefficients Cy and Cx, in g.neral, canuot be neglected. There-

forc,A(c*. V) usually becomes zero at angles of attack which are different from the angles corresponding to

Cy ,,tax,

Let us consider link Vl. Link VI is a differentiating link of second (rder. When expanded, the transfer

function of this link lakes the following form:



c= M ) S g(r)=p,+[[:2, + sin0I,+
L,

] ,l '

'2 Y \ 2 _ m g"
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The coefficient of p depends primarily on the first term and therefore increases proportionately to the

flight speed, but with increase in altitude this term decreases proportionately to the air density p. In the

cc is the most important.first factor the term containing Cy

Of the two terms most containing p, the first was already considered in link V. This is the reference

I SpV

frequency w 5 with the multiplier c_ m The term increases proportionately to the square of flight speed.

The second term does not depend on flight speed and can change only indirectly through the influence of Mach

number M.

Usually link VI possesses more than critical damping and can be expressed in the form of links VP and

VP' of the first order connected in tandem:

W6 (p)= W'6(p)W_ (p)=(p + _)(pq-to_l.

In our example

at altitude 5,000 m,We(p) - p2 + 1,304p + 0.01932 = (p + 1.289) (p + 0.0155;

at altitude 12,000 m,W6(p): p2+ 0.584p + 0.00826 = (p + 0.5'/5 (p ÷ 0.01455.

Figures 5 and 6 show the characteristics of first-order links VP and VI", and also of the equivalent second-

order link IV with transfer function W6(p).

2o_g(w)
60

O0

26'

0

/80

/J5

90

#5

..5oo0. /

¢a05=00 II j Gt6:OlJ8 .,.d /

o.ow J._ ¢o'\ m _oo(o

o,oo_ o,ot 03 /.o /o _o¢0

13S

gO,

i
I

' -.---7.1----... ,..-- ......
1,

# /
: -- -" I /

o.oo/ o,o/ o,i z.o Io /oo¢0

Fig. 5. Logarithmic frequency characteristics of con-

trol links for longitudinal motion. Altitude 5,000 m,

velocity 800 ki.lometers per hour. Amplification factor:.

k s = (0.0141 ] sec t) ( --36.8 dbS; k 6' = ( 1.289 / sec5 ( 2.2

dbl; k_ (0.015/sec)(-36.5 db).. k s = (0.01934/sec _)

(- 34.3 rib).

Fig. 6. Logarithmic frequency characteristics of con-

trol links for longitudinal motion. Altitude 12,000 m

velocity 800 kilometers per hour. Amplification factor:.

I% =(0.0121 / sec =) (-58.3 db); k_ = (0.57/see) (-4.9

db); ki = (0.0145/sec5 (-36.6 db) ks = (0.00855/sec t)

(-- 4].5 db).
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Finally, let us look at link VII. In the denominator of its transfer t.mction tbere is an expression which

is equal to the transfer function of link V divided by V.

In the numerator we can also separate out an operator, which describes link V, multiplied by V cos 0.

During horizontal flight at 0 = 0 this link VII becomes a simple amplifying link with the amplification factor

kt = 1. At small values of angle 0 we can approximately consider

u: (p) = 1.

At large values of angle 0 we have to carry out a detailed analysis of the transfer function of this link.

Figures 5 and 6 show the amplitude-frequency and phase-frequenc) characteristics of link V and VI, cal-

culated for the case 0 = 0.

Section 3. Transfer Functions of Control Links. Simglification of Equations of

Motion and Transfer Functions

The system of links I-IV form a closed loop for airplane stabilization. This loop can be conveniently opened

after link IV. The transfer function of the opened system is

w(p)= - u:q (p) w,(p) W_(p) w, (p). (a.l_

Usually, in control theory [3] the transfer function of an open loop is preI xed by a plus sign. This is obtained

because an error signal is supplied as an input into the first link. Becaus_ in our case the output signal of the

last member is fed into the first member with the plus sign, and not a mi tus sign as is usually done in control

theory and tracking systems, it is more convenient to prefix a minus sign to the transfer function. In this way,

the usual stability criteria of general control theory are preserved.

The characteristic equation of the closed system will have followitg form:

1 Ws(p) W4(p)-= l+W(o) =0.
W 1 (p) W 2 (p) Wt (p) W 2 (p)

It is easy to confirm by direct calculation that this equation agrees with the usual characteristic equation

[ 1, 2]. At the same time, representation of the transfer function in the fcrm of (3.1) allows us to apply the widely-

known contemporary methods of control theory [3], particulary frequency methods,to the analysis of airplane sta-

bility. With this it is easy to see which link is the decisive one, and whe:'e it is necessary to introduce a correct-

ing link.

In particular, the constant term a 4 of the characteristic equation etuals

1 I 3:1_. YV,t M z Y /.,
a,-- te:¢k_=-- fl +k)-- ÷ .... ,

telk_, t,'lk2 ,Iz m 1/ ,lzmV

where k = -klk2ksk 4 = W (0) is the amplification factor of tile opened stal ilization loop in the static regime

(p= 0).

Expanding the equation for a4, we obtain

/_l_. 7-' }.Vc(>fl_X Vsin0 M_.' g }" cos 0 -- .\'_ sin 0

.l z l" rn J z g rn

which corresponds to the usual expression [1].

From tile condition of aperiodic stability

I
-- -- -- leak,>, 0

*'lk._
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it can be immediately seen that increase of the amplification factors k t and k2, that is,decrease of the static

stability and of the derivative of lift force with respect to speed, lowers the stability; conversely, an increase

of the coefficients k z and k,t, that is, an increase of the derivative of lift force ya and increase of M.._ ( as
Jz

a result of compressibility), acts in a stabilizing manner.

The equations of motion of the airplane can be expressed in an abbreviated form as follows:

" Af_z

ha= W1(p)I W4 (p) AV +_ k_,] ,
(3.2)

Hence

Aa ..... A_, ]l __r 09 J,

I
A V lV_ (p) It"., (p) w_ (r) M _............ LL A_,

1 4- W (p) J, I

A_= W_(p) uT,,0,)A== _'-2Lp) _"[_') _r°°')- -_'_' z_,, I} (3.3)
1 + W (/') J, I

I
1 + W (p) Jz

I

t tr', (p) w_ (p) w_ (p) g/7(p) M_a_. [An= -- W-,(p) A0= I
I' p[lF W (p) I J,

Formulas (3.3) determine transfer functions relating the basic kinematic parameters to the elevator de-

flection angle. These transfer functions can be analyzed easily by control theory methods, in particular with

the help of frequency methods; in addition, in calculation of the frequency characteristics for [1 + W (p)]

we can use the well-known diagram [3] which allows us to calculate the frequency characteristics of the closed

system when the frequency characteristics of the open system are known.

ltowever, in these calculations, the main advantages of the frequency methods, simplicity and clarity, are

lost.- Therefore, we shall henceforth simplify all transfer functions, the simplification being based on the fact

(see Section II) that the natural frequencies of the individual links are widely separated on the frequency scale,

Let us consider first the case of horizontal flight.

Let us compare the roots of the characteristic equation

g', (p) W_ (p)
W'_ (p) W, (p) = 0

for the case of a plane with an immobile rudder, with the roots of the equations describing links I and IL The

calculations will be carried out for both altitudes, using the previously assumed aerodynamic data.

As a result we obtain two algebraic equations of fourth degree:

at H : 5,000 meters

p' + 2,914p' + 8,33 lp' + O, 1188p + 0,0294 == 0,
at H = 12,000 meters

p' + 1,299p _ + 3,278p _ + 0,0455p + 0,0201 = 0.



TableII presents the results of calculation of the roots of the complete characteristic equation, and

the roots of polynomials which describe links I and II = _d _--- 0 .
W2(e)

TABLE II

Characteristic
Roots H = 5000 m H = 12000 m

equations

Corn plete

1

uej(8)
I

---0

w., (p)

LargeSmall

Link I

Link II

--1.45_2.47i

--0,00655 :_ 0.0592i

hi .4555: 2.49i

---0.007 ± 0.0651 i

--0.644:t. 1,687i

--0.0056± 0,0783i

--0.6425: 1.69i

---0.0067 ±0.082i

e_

It is known [2] that a pair of large roots characterizes a short-period motion. Calculations of the roots

of the complete equation and roots of the quadratic expression 1,/W t (p) = 0, which characterizes link I, show

that the roots in both cases are sufficiently close to one another. This means that the transfer function Wl (p)

quite accurately describes the short-period airplane motion.

More than that, in our example the pair of small roots is close in i _agnitude to two roots of the charac-

teristic equation which describes link If. It should be noted that the sufficiently close proximity of the small

roots, which we have obtained in this case, sometimes can not be obtained.

If we are interested only in the short period motion, then in Equati3n (3.3) we can assume, by way of an

approximation.

I 1

I + w(p) I- w1(p)Iv_(p)IVs(p)W,(p)

In order to show this, let us rewrite the left side of Equation (3.4) in the following manner;

(3.4)

1 I

lit, (p) _ IVICr) (3.5)
I I I

at, (v) w'_(p) re, O0 w,, (v) W, (p) .m u'. (p) w,_(v)
1

H_re it is assumed that W z (p) _D-tr because of following considerations. As it was noted before (see see-

lion 2), the natural frequency of link I is several tens of times larger thai the natural frequency of link II. An

increase in flight velocity leads to an increase of frequency in link I, 1hat is, to an increase in the difference

between the frequencies of links I and lI. Therefore, link I in the regiort of frequency w 1 can be approximately

described by the transfer function

It is easy to convince oneself that in most cases the second term i_ the denominator of (3.5) can be

neglected because of the smallness of the product of the amplification f; ctors of links 1II and IV (see Figs.

3 and 4). Therefore, in this case the characteristic equation can be wr tten approximately in the form

1
= 0. This fact is well known in the literature [1] and is confismed by the above example.

Wt (p)

For the case of short-period motion, the equation of motion (3.2), can be presented in a simpRfied from

as follows:
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(3'4).

a_ M!
_=0.

Wi (p) J_
(3.6)

The transfer functions (3.3) for short-period motion can be rewritten, considering the simplified expression

As a result we will obtain the following relations:

al';
av- w,(p) v;'s(p))_a_,p2

(3.7)

..... M_Ao= w,(p) IV5(P)..__A_,
pZ y_

Mi
5H=

Harmonic oscillation of the rudder induces oscillations of the angle A a, which will lag in phase the

oscillations A 5, The engle of phase shift will increase from 0 to -180" with increase in oscillation frequency

from zero to _. The amplitude of the forced oscillations of angleAct will increase from the static deflection

of Aa at w = 0 to a maximum value at to _ Wl, and at w > w t it will begin to decrease again. These changes

are shown in Figs. 9 and 3 [frequency characteristics of the transfer function W 1 (p)].

Let us consider all the other expression in (3.7). Here we shall replace the multiplier 117"1 (p) bl__ a_
Jz

by Act, that is, we shall consider the changes AV, AO*, A0, and AH, assuming that the airplane goes through

harmonic oscillations of the angle Aa.

From the system (3.7) it is easy to see that AV = W2(p)W s (p) Act. Withtheaerodynamtc data which we

have assumed in our calculations, the dependence of AV on Act will take the following form (H = 5,000 meters):

AV_ 8,42p+12,67 h_. (3.8)
pa

As was shown, the natural frequency of airplane vibrations in short-period motion for various examples is

within the limits w I = 1.8 to 2.91 sec -t.

If the plane oscillates harmonically through Ace with the frequency w b then the change of velocity A V

will be determined by the transfer function (3.8). The expression in the numerator in this case produces an ad-

vance of 62.5". Thus harmonic oscillations of the angle Act induce velocity vibrations with a phase lag of

62.5 ° - 180 ° = - 117.5". At tile amplitude Act = 0.1 radians _ 5.73", the amplitude of velocity change will _e

small: A V = 0.3 m/sec, that is, 0.135% of the initial velocity V = 22_ meters per second.

Now let us consider a simplified expression of the transfer function

aa p'

With the aerodynamic data which we have assumed in our calculation, this transfer function will take form:

* Translator's Note: The equation forA O wa_ omitted from (3.'/). The reader can supply it by reference to

(3.3).



A O _Ws(p ) _,:,(p)_Ws(P)_= 1,29pt3.2
,',a p2 pJ

Oscillations of the anglo of attack with the amplitude AC_ = 0. t r_.dians induce oscillations of the anglo

A 0, which lag in phase by 22 ° - 180 ° = -158 °, with the amplitude A0 : 0.058fi radians. Thus, the airplane's

oscillation through an angle of attack Aa with frequency w t induces oscillations of tho airplane's centor of grav-

ity, which creates a deviation of the velocity vector by an anglo whoso amplitude reaches 60% of the amplitude

of the anglo of attack.

From Relation (3.7_* for AO it is seen that

)- W_(/,) a_= f [_(p) +P'I _=aa+A0.
A{) ----- #

Thus, the anglo A 8, in tho_ case when the airplane vibrates ham onically is a sum of two harmonic vibra-

tions; the vibrations of angle Act and anglo A 0 (shifted in phase and distorted in the amplitude from the oscilla-

tion of Act).

Finally, let us look at the altitude oscillation AH, when the airpano is undergoing harmonic oscillations

of the anglo Act. From Formula (3.7) forAH it is seen that

a__n=v w, (p) w, (p) W_ (p) - vw, :p) w, (p)
aa p ps

When 0 = 0 link Vll becomes an amplifying link with tho amplification _actor k T = 1. Therefore, AH in this

case will be a simple integral of the function V • AO. This meant that the vibrationsAH will be shifted in

relation toAct by the additional anglo -90*, and willhavethe amplitude AH = 3.1 motors at an amplitude of

Act = 0.1 radian.

Thus, at largo frequencies(rapidoscillations) the motion is rodu(odonlyto the change of Act, t_$ and

AO with other parameters being constant.

Lot us now consider the slow airplane motion, which is character zed by the pair of small roots of the

characteristic equation.

In this ease link I can be approximately considered amplifying v ith the amplification factor.

It1= W t (0) = -- J___z rt _gSg'] (3.10_
M_ . 2m -

., _+ .., _,; -,: ,go)
This property of link I allows us to simplify significantly Formuh_s (3.3) for the case of slow motion.

Let _ts first examine the characteristic equation

i _',(p)w, (p)_o

considering the simplification (3.10L Lot us consider the. case of hori:ontal flight. For horizontal flight

0 : 0 and the characteristic equation will assume the form

Aopt + Atp + At.=O ' (3.11)

where

* See Translator's note, preceding page.
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x" v v M; Mp
Ao=

m mV Jz Jt

y, yV X" Mvz
A1

If'M: _'v_;lA,:_ -- g
m Js m Jz J V

g_

mV'

X v M..__
_ -- j

m Js Js m m m ] V

(3.12_

Let us insert into Equation (3.11) the above aerodynamic coefficients. We will cbtain the following equations:

1) For H = 5,000 meters

pS+0,01280+0,00354=0

with the roots Pl,z = - 0.0064 _ 0.0597i.

2) For 1t = 12,000 meters

p_+O,O117p+0,00636 =0

with the roots Pl,2 = -0.0058 j: 0.0793i.

These roots are very close to the small roots of the characteristic equation, which have been calculated

previously for the complete system of equations, and do not differ very much from the poles of the transfer func-

tion of link lI.

The equations of longitudinal motion, (3.2), when combined with the simplification (3.10) for the case of

slow motion can be expressed in the following form:

a_= _:L '0')_v+T, aa ' (3.13_

,_v-- w_O,_w, (t,)_.
This system of equations is of the second order.

Let us rewrite Equations (3.3) considering the simplification (3.10). Prior to that let us divide the denomin-

ator and numerator of Formalas (3.3) by W 2 (p). This transformation, with the consideration of simplification

(3. 10_ changes the denominators of Formulas (3.3) into quadratic expressions. Thus, the expression in the de-

nominator can be considered a transfer function of a certain new link, which is close to link II in its character-

istics. We shall call this link a long-period link, and it will be of great importance in the following. As a

result we will obtain the following formulas:

I

W._ (,,,) ,_f,]
Aa --=- A_,

t .& M]

AV ws (p) ,_
1 Jz IH z

W --=_ w_(p) u'_ (r)(P) Mz

A;_----- W', (p) :.,I__ ___ AT,.;
_t

I ,l, M z
-_. W3 (P) W4 (P)

(y)



22

w,(r) m_

l w: (p) w_ (p) ,_, _..AH .... ' ...... =- (3.14)

p I lz W M_

w2(/,)- _'._3(r)w,(;)

By introducing into these formulas the aerodynamic data which hase been assumed in previous calculations,

we will obtain the following relation between Aa and A'6 :

p2+O,O14p+O,O0428 5,35 A8

1 6,86

•" p_ +0,014p+0,00428 -- 6_ (8,42p+ 12,7) (0,000437p-_ 0,000485)

_--- _ p2 _0,014p+0,00498 5,35 A_.

(I -- 0,000538) p_ _-(0,014 -- 0,0014) p+0,00428 --(),0009 6,86

It is easily seen that the influence of links III and IV in this case is insignificant, If we neglect this in-

fluence, then we will have a direct proportionality between the displacement of the elevator and the deviation

of the airplane by the angle

Mi
Mz

At frequencies which are close to the natural frequency of the airplane during slow motion, we will have

a significant change in phase and amplitude of the induced oscillations of the attack angle, in relation to the

oscillations of the elevator. As is shown in Fig. ?, the amplitude of Aa is subject to two sharp changes with

the change of frequency of A 6 : at frequency _ot, equal to the reference frequency of link II, the amplitude

of A a reaches its maximum; at _vl, equal to the reference frequency of 1he link which we had previously called

the long period one, the amplitude of Aa reaches its minimum. Further _ncrease in frequency leads to propor-

tionality between the deviations Aa and A6. In exactly the same way tte proportionality is preserved at low

frequencies. The sharp change in amplitude from maximum to minimurl is accompanied, as can be seen from

the frequency characteristic in Fig. 7, by a phase lag of the oscillations ¢f Aa with respect to the oscillations

ofA6 , and at the frequency corresponding to the point of inflection of tl e amplitude-frequency characteristic,

this phase shift attains a magnitude of 45".

Now let us consider the change of airplane velocity during a slow dsplacement of the elevator. In our case

this change will be determined by the following transfer function:

t-

A V 0,038p+0,057 5,36 A

V p_+ 0,0126p + 0,00338 6,86

In the numerator of this function there is an expression in which at p : icoz = 0.06i we can disregard the

influence of the imaginary part; in other words at low frequencies link Ill can be considered as a purely _mpli-

fying link with an amplification factor of 0.057.

In the denominator, there is an expression which describes a long-period link. As we have already shown,

the natural frequency of this link almost equals the frequency of the slow oscillation of the airplane. Thezefom,

and also by considering everything that has been said about the numerah)r of the transfer function, we can say

that the oscillations of the velocity increment AV lag the oscillations of the elevator: in particular, at the

natural frequency of the oscillations the lag angle equals 90". The amplitude of these vibrations in comparison

to the static deviation AV increases to a certain maximum, and then dec eases; its maximum ratio to the static

value is equal to the ratio between the natural frequency and twice the time it takes the vibtation to decrease

to 1/e times its original value (coefficient of p).
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Fig. q. Logarithmic frequency characteristics of the

approximate transfer function of the elevator control

;ystem, in the case of slow longitudinal motion..Al-

titude 12 kilometers, velocity 800 kilometers per hour.

In our case this value is equal to

_- =4,6.
0,0126

As has been said before, the long-period link

is close in its characteristics to link II, because the

influence of links HI and IV is small. Therefore,

the damping coefficient is approximately equal to

1 X V
----. From this it is easily seen that a decrease
2 m

of X V (thrust increase with speed increase in turbojet

engines at supersonic speeds)will lead to an increase

m the latio of the velocity amplitude to the frequency

of the slow natural oscillations of the airplane.

Similar reasoning can be applied to the change

in AO, because the transfer function of link V in otg

case can be regarded as a function of a purely ampli-

fying link. However, in general, with large angles

of attack, as has been discussed before, the reference

frequency of link V, which as a rule decreases with

decrease of speed, can be greatly changed. Link V

can even become unstable. A decrease of the refer-

ence frequency of link V results in a proportional de-

crease of the amplitude of induced oscillation A0 •

Let us consider the change in altitude during slow

deviation of the elevator A/_ : during horizontal flight

0 = 0 and, therefore, WT(p) = 1, and AH will be a

simple integral of the change VAO _ thus the change

of altitude will be completely determined by the

character of the change of the trajectory angle A0.

In conclusion, let us note that in the slow motion

the change of the parameters 619, LxV and AH de-

pends largely upon the qualities of link 11, for which

the slow-motion frequency is almost the resonance

frequency, and therefore in this case small changes of the frequency to of slow motion leads to a large shift in

phase of the induced oscillations. Here the character of the induced oscillations depends largely onthe deriva-

tive with respect to flight velocity of the tangential forces are applied to the airplane:

X v g
..... sin O.
m It

Let us now turn to the case when 0 _= 0. In this case the transfer function W4 (p) is a polynomial of second

order, and not of the first as in the case of 0 = 0, which seems to cause some complications.

At large frequencies which are in the neighborhood of the reference frequency to1 of link I, we can consider,
1

as before, that link H is doubly-integrating with transfer function W I (p) = link HI is purely differentiating
X a _ '

with transfer function Ws (p) =---_-p, and link IV' is purely differentiating with transfer function p. Therefoan

we can write

, - I X s

wt (p) uzt (p)



Expanding this expression, we find (in the case when MV = 0)

I+ W(p) ( Y" _ .a --, _v )
bt z÷M,_ M z X'[ Ig8

w,(.-T =p'+ .,vcos8 9. )P-_I+ _IP ., m_os_ --

..p2+ ,,Iv" & p .... -- + tgO.j, mV j, raV
(3.15)

From this expression we can see that for short-period motion, even at a large angle 0, the damping coefficient

does not change, but the frequency changes somewhat with the change of angle 0. However, since the multi-

plier of tan 0 is very small, then even for large 0, up to 80 °, we can consider that the short period motion is

completely described by link I alone.

In the case of slow (long-period) motion we can again consider

Ja At"

W, (p) = k, =" X4I, _ (P) = S_.

With these conditions we have

1 + IIz (p) l ,. 1 b|:*

w-,(,,) = _,,(p) w, (p) _, 0,) w; (p) u_,(p)= w, (p) _ M, (p) w; (p) =

( ) M:'Ix" "1xV g sine p+ _Vg Y'p][ lge (3.16)

Therefore, also in the case of long=period motion, we can approximately consider the airplane as a sys-

tem of second order, as before. But, in contrast to the short period metier, the presence of an angle 0 very

strongly influences the transfer function during control with the elevator.

In order to illustrate and confirm the degree of approximation, the oots of the complete characteristic

equation for the case of 0 : 60"(H = 12kilometers) were calculated, as w_'ll as the roots of the polynomials

(3.15) and (3.16). The results are shown in Table III.

TABLE III

Kind of motion

Long- period

Short-period

Exact values of

roots

0.0107 ± 0.495i

--0.513± 1.74i

By Formulas

(3. 15)and(3. 16)

0.0114_ 0.049 li

--0.478 :[: 1.752'

Roots of polynomials

1 and 1

w, Co) w36_)

As can be seen from this table, the exact and the approximated vale _s of the roots are very close. Also

the approximated values of the roots of the characteristic equation can be 3brained as roots of the polynomials

1 and 1
Wt (P) W--_) ' but with less accuracy

All the previous considerations are true when MVz : 0. When MzV=# 0, then the general considerations re-

main in force, but in this case W((p) has to be broken down into its factor

W, (p) = (p te 0 _. .-7-P') tp-p,),

in which the relationship of frequencies will usually be preserved. Thereffre, during short-period vibrations
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durhlg long-period vibrations

_'4 (P) '= P (Ptg o-p---P_) ;

W,(P)=--m(p--p,).



CHAPTER II

LATERAL MOTION

Section 4. Block Diagram of Perturbed Lateral Moti( n

Let us write Lhe equations of lateral motion in operator form* (see Appendix I) [2] * *

p---.,_ [_-- psina+_cos0 "_.... Y _,,s,_ rnV _n'

'_ M'"* M ''x M r _ Al_ru

M,_+ p, _[_P "_+ tg,_p (M;' ®'=-_-. %+-J2....... + f- tg 0 _n,J, . \ J.

to v

pOt =_,
cos 0

py = %. -- sln Opt_= +.-- ®y tg O.

Let us eliminate the angle of sideslip from the system of equations (4.1). In order to do that we have to

add the first equation, after it has been multiplied by M'v--, to the third equation, which has been multiplied

----mV ' the second equation, multiplied by --_-y, we must :-dd to the third equation multiplied

by --; we will obtain
Jr

jy -_ j--_ --

+(

mV Jy ly cos 0

I ( ) ]M_ ' p2_F + sina p+ cos0 "_ -- _ += .... --. Y p

- Jr Jy mV Jy V Jy -_

P M ': P _ ) ]

M _.t '%M. y 1 I/ -,_M. M

J.

M' M' ( /. --y j_ Y ""Xl& y Y

s_ J, J, s./ J, 7,, +-_ -, s,/

(4.2)

• It is assunmd that the coordinate axes here are the principal axes of inertia, and all derivatives are referred

to these principal axes(see Appendix I1).

• * .; ,and 6 II are standard Russian symbols for deflection of the aileron.,: and rudder, respectively. Translator's

Note.
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where

',, )-_- tg _ ) -I- 2 [-ff_--s "_ -_-- tg 0 . (4.3)

The second of these equations possesses a simple physical meaning. Let us write the moment equations

about an axis which is inclined to the longitudinal principal axis by an angle cp. For this, it is sufficient to

multiply the second equation by Jx cos _o,the third by Jy sin ca, and add them. Here the terms containing

will assume the form

(M_ cos '_ + AI_ sin _) [3 - M°[3,

where M is the moment about the new axis. If we choose the angle according to the equation

M_

we will obtain exactly the second equation of (4.2), in which in this case, AI _ ____0_ =0. In other words, the
06

second equation of (4.2) represents nothing else but the moment equation a_out an axis such that the moment

about this axis does not depend on the angle of sideslip. This axis can be called "the neutral axis of sideslip'.

The system of equations (4.2) can be presented in the form of the block diagram, which is shown in Fig. 8;

the transfer functions of the individual links have the form

It;', (p)= 1 ,

-- )_ + T_"tg --a<o,

1
u q, (p)=

-'-y a M r My

-J.,,-P _ g,, s_ s,. ),-

"_I_(1,_) -- I , (4.4)
17

,_ m r \

It_,(p)= -- P=+. .... 7 7 mV 2, V- .,._-cosl_,

,_1"," M_;" z_ M_ z '_"
tw', (1,)= 7 p J, mY _- J, mY'

u_(e)= p-_].

The system of links I- V forms a closed stabilization loop. The other links will be called the steering

links (cf. Section I).

Frequently it is necessary to introduce the signal B. In determining B from the third equation of the sys-

tem (4.1), after simple but extensive calculations we will find

M_3 cos 0

where

..... + .... tgO _N ,
--_3+ _Tf,P+ )_-cos,_ mv Jy J.v



Ws(p)=sin_pt+_-)'-,ty sina+---jy cos_+--vcos0 p----COSy kJy +_tg_ . (4.6)

Equation (4.8) can also be represented in the block diagram Fig. 8. For this it is necessary to send the

signal y through link VIII with the transfer function W s (p) and add to i_ the signals6Dand _ H' sent through

the additional links according to Formula (4.5), and the whole should be sent through a link with transfer func-

tion W t (p).

Link VIII with the transfer function W s (p) is a differentiating lin_ of second order. At ot = 0 one of the

the roots of the polynomial Ws (p) becomes infinite, and the link becor_les a differentiating link of the first order

with the transfer function

[ My x g g ( M v + My
W.(p)=_--y + cosO p---v cosO\ .....& Jy tgO . (4.6')

In other words, in this particular case link VIII can be expressed in the form of a sequence of two links

in tandem: one amplifying link with the amplification factor

---+ -cos0
Jy V

and a second link with a transfer function

I_'_(p) =p -- & co_ 0 ._-'7 Jy tg
V M;r g

-- +--- cos
Jy V

If a :# O, but the valueof ot issmalL then the frequency of the first link becomes finite but very large,

and practically, the relations remain: a sequence of two links, one of which practically is amplifying and the

other differentiating of the first order. In other words, for small values of a it is possible, in the expression

for W s (p), to set a = 0 without a large error, and to make use of Formtda (4.6").

Let us note that in the derivation of Equations (4.2), in eliminating $, we are dividing the equation by
.8

AJ-'v • therefore, the block diagram presented is true only for airplan,._s which have directional stability. This
Jy

can also be seen from Formulas (4.4); when hff_ = 0 we have
Jy

• : (p) =

;,,v/l"-k-S7 +

.t ,My
W,

Jy //
l

1

re, (t,) = M_ MT.,

•Ix Jy

I
w, (p)-- --,

P

"x ( Z _ ),My --TtVw, (p) =-_ p p



|

I
,_.L

L_ L

"5
!

>l

t

_l -I_-I

I

_,_j

!

o

H A_

4.

i

B,I |
_ o
_,_1

"_', I

_', -TI_ , ._. I

"_,'_L_I_r_I_II_,c_I__I
___i_r _

, "-,._ _. I'_"_, _ L.,-

o

,-ci

o

I:q

o_



The transfer function W (p) of the open stabilization loop in this case equals

W (p) = -- W_ (p) If/, (p) W, (p) W, (p) W_ (p) --- -- I.

Therefore, the block diagram in this case is trivial, and does not give us any significant results.

It is possible to construct another structural scheme for the case M_ = 0; however at this time all aircraft

always have directional stability (normally they are even aperiodically un table), and therefore in this work we

are limiting ourselves to the example examined.

Link I is normally an oscillating link; as will be shown in Section 6. this link specifies the presence of a

lateral oscillating motion ("the Dutch roll"). We shall call it the oscillating link. Link II is a differentiating

link of the first order; the presence of it specifies a spiral motion, and therefore we can call it the spiralling

link.

Finally, link III is a link of the first order; the presence of this link, as is clear from the structure of its

transfer function, is connected with toM x x, the damping moment of rolling motion; therefore we can call it

the rolling member.

As will be shown in Section 6, links VI and VII are in practice either unimportant (at low frequencies)

or degenerate into purely differentiating links (at high frequencies); link vii is practically unimportant because

of the small magnitude of the coefficient Mya
Jy

In the next section we will give a brief analysis of the characteristics of the links.

Section 8. Brief Analysis of the Characteristics of th,." Links.

In order to present the characteristics of the individual links eomprL, ing the stabilization loop, and also

of the control links of the block diagram of lateral motion in contemporar ! airplanes, we have made calcula-

tions of their amplitude-phase characteristics.

TABLE IV

Designation

pv:' I kg]

I"
b4 -

a

m V

J--7

 'AI±I
Jy LSeC/

M "v'x 1

H : 5 km

1850

0.69

-- O. 0.t86

--0.14

--14.7

--5.41

- 0.0442

H=12 km

780

075

--O.0152

--0.059

--6.2

--2.28

--0.0198

Designatio:_

j. Teg

-L--

Jx _ _

M_' I

j,, _e.:

jy _-

H=5 km /1=12 km

--0 456 --0.19

-- 1.26 --0.56

-3.92 --1.66

--I .78 --075

--12.8 --57

--1.98 --0. 835

0 0

In these calculations we have assumed the following values of the aerodynamic coefficients for the velo-

city V = 222 meters per second (Table IV).



Intheinitialregime,forsimplicity,it wasassumedthat8-=O,ct = O.

Figure 9 presents, for an altitude of 5 kilometers, the amplitude-frequency and phase-frequency logarithmic

characteristics of link I - V, which form the stabilization loop. Analogous characteristics for an altitude of 12

kilometers are presented in Fig. 10. In constructing the characteristics, each transfer function was divided by

the amplification factor of the link, i.e., the amplification factor of all links was assumed to be unity. The

amplification factors of the links are presented in the same figures.
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Fig. 9. Logarithmic frequency characteristics of sta-

bilization loop links for lateral motion. Altitude

5,000 m., velocity 800 kin/hr. Amplification factors:

k t =_3.184sec 2) -14.7 db); k t =(0.0881/sec t ) (-22db);

k t =(0.054sec s) (-25.2 db); k 4=_lsec); k5 =(-0.239/

sec t) (-12.4 db); k =-qqk2ktkik s = 0.900209 (-73.3 db).

O.1
•/

90

I

Fig. 10. Logarithmic frequency characteristics of

stabilization loop links for lateral motion. Altitude

12,000 m., velocity 800 km/hr. Amplification factors:

k t =(0.433sec t ) (-7.29 db); k t = 0,0122/sec s)(-38.2

db); k t = (0.274 sec t ) (-11.2 db); k 4 =(1/sec); ks =

(-0.101/sec s) (-19.9 db); k =- ktk_klk4k 5 =(0.000146_

(-76.6 db).

As the calculations have shown, link I with transfer function W t (p) is a stable oscillating link with refe:ence

frequency tot:

For H = 6 kln, w I = 2.33;

For H = 12 km, w t = 1.52.

The relative damping coefficient of this link equals _ 1 = 0.126 at an altitude of 5 kilometers, and _t =

= 0.081 at an altitude of 12 kilometers. Thus, this link is weakly damped. /n the general theory of dynamic
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stability[2], thiscorrespondstothefactthatoscillatingmotionisslowlydamped.
LinkII with the transfer function W2 (p) is for this example, an unslable differentiating member of first

order with reference frequency w 2 -- 0.0056 for altitude fi km and ta z = 0.c 0202 for altitude 12 kin. As is seen

from these results, the frequency uJ2 is very small over the entire range ot the altitudes considered: and with

increase of altitude _t decreases considerably. The argument of the function W z (p) varies from minus 180"

to minus 270". Thus the airplane under consideration is aperiodically unstable. However, the coefficient a 4 0

which determines this instability is very small. Therefore, because a4, 0 is small, the frequencies ¢_2 are also

small.

The presence of aperiodic instability is typical not only for the airplane under consideration; most con-

temporary aircraft are aperiodically unstable.

The link of first order with transfer function W. (p) is stable. Its re erence frequencies for the cases

1 1
H=Skm and H: 12km, respectively, are(_s= 3.42-- and ws:1.6--. As can be seen from these results.

see _;ec

the reference frequency changes considerably with increase of flight altitude.

The differentiating link V of the second order with transfer function W s (p) is a stable link with reference

frequency _o5 = 2.26; the relative damping coefficient of this link is _s = 0.00751 at an altitude of 5 km, and

_s = 0.00326 at an altitude of 12 kin. Thus, this link possesses a very small damping coefficient. Practically,

it is a harmonic link.

Figures 11 and 12 show amplitude-frequency and phase-frequency characteristics of the control links.

As in the first case, the amplification factor of these links was assumed tt be one. Since at the altitude H=

= 12 kin, w s = co, the frequency characteristic of this link is not shown in Fig. 11.

zoO.1,rw)

6O

#0

gO

0

qp

*¢=5l;/?,0_
I
I

/ o.o_ oj '\ /,0 /0 /00 co

o 0ol qt /.0 m mO

Fig. 11. Logarithmic frequency characteristic of sta-

bilization loop links for lateral motion. Altitude

5,000 m, velocity 800 kin/hr. Amplification factors:

k 6 =(-0.0112/secZ)(-39 db); k7 = 0; k s =(0.0202/

sec z) ( -33.9 db).

_'0tg(w)

I t
!

I//

_oy /o., \\_o ,0 ,oo ,_,
_" _,-o_ ,5,-005gd,,;03sz I I

0 P o/ o.,, 1o /o /oo _o

Fig. 12. Logar thmic frequency characteristics of

stabilization lcop links for lateral motion. Altitude

12,000 m., vel)city 800 kin/hr. Amplification

factors: k6 = (,*.0147/sec s) (-36.6 db); k7 = 0;

k 8 = ( 0.0084/s, :c _) ( -45 db).

The control links with transfer functions W_ (p), W 7 (p), Wa (p) are :table differentiating links of the first

order. Their reference frequencies are equal to:.
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At atitude 5 km At altitude 12 km

w 6 = 0.00.564 w 6 = 0.0115

co7 : 0.14 w 7 : 0.059

a% = m _8 = 0.346

As it seen from these results, the frequencies of the control loop links (except for link VIII, the frequency

of which can change within wide limits) are considerably smaller than the frequencies of the links of the sta-

bilization loop, with the exception of link II.

M'p
As a result of the smallness of the coefficient _ , link VII transmits considerably weakened signals

ly

and ill practical calculations it can be considered that W 7 (p) = 0.

Let us examine more closely the links which form the stabilization loop. In analyzing their character-

istics we shall pay special attention to the changes due to their dependence on the air density and flight velo-

city. tlere, just as in section 2, we shall disregard the influence of air compressibility(Mach number M) on

the force and moment coefficients, or in other words, we shall consider the change of forces and moments only

with O_e change of the dynamic pressure
pV'_

q,__ .....
2

The transfer function of the oscillating link I can be written in an expanded form:

W_(p) = l

S = laS \ m'°YS-'P Sl:- c;_ 0v+,,,,,_ pv/-.-:-"1,._,':, 2,_-ev'-4 G'_
I

pa+ 2_loqp+ o__ "

The reference frequency of this link equals

1 psv ,.q. ._ 2,.
_al_--_ .... _--5_-" -2 FS l"

Tt 2m 2 ry ry

From this formula it follows that the frequency w I is proportional to flight velocity.V. With increasing

I ' l '_' ." l_y _ qP'l

ahmlde w_ decreases. Usually the value c_ :2r_ is small in comparison with ._r_, pS-'-) for all altitudes;

therefore we can approximately assmnc that

7;=2m

where

2 ,'n 2r//

tt-----_ i _ _-_- -- .pS V

From this approximate expression for w 1 it follows that the frequency w 1 decreases with increasing

ahHnde approximately as _.'p. The relative damping coefficient of the link under consideration _ 1 can be

presented in the following fonn:
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i D

pSV / _ ,n'fy\
-- c.+- '

-- -- P?I yY

_s_ ,,,_2,,,+,_ 2-4_,,,I _; _s;

t I;Y

As can be seen from this formula, the relative damping coefficient of this link does not depend on the

flight velocity. With increase of altitude_damping deteriorates as a result of the increase of the relative den-

sity /_. Here, just as in the expression for wl, we can neglect the quantity

--4

C f_ m _ Y

" 2r_ "

Then the relative damping coefficient can be written approximately as

2r_
_u_-

Therefore, the relative damping coefficient of link I, decrease with ncrease of altitude, just as the fie-

quency wl, approximately proportionately to _?-p.

The amplification factor of this link is

. ry ,r._,

The differentiating link II with transfer function

-- -_,-+._-tgO p+ _ -772_,) 2,,,+tV2(p)=V 2m L\ r; r_ \r_t 2%

+ lg 0 \7;:d 2-S-_ r_z 2C/_ 1

has the reference frequency

1 s pv "C";;'" m_m:.,
l'a o , - 2 m '_y ,_

.m.- ry m,. \ Y ,m_.

. ma II

a 1,0

-i 'u'._,_C

From lhls it can be seen that the frequency w 2 is proportional to fligh velocity and air density.

Since the coefficient a4, 0 for contemporary aircraft is small, the freq:mncy w z for all altitudes and velo-

citie_ is considerably smaller then the frequency of the other links which form the stabilization loop. It is pro-

portional to the flight velocity and air density.



TheamplificationfactoroflinkII canbeexpressedinthefollowingform:

k_= :, \dr ='4 d,_ ='d )+tg \,_,_ ,,te;_ r"

Link III has the transfer function

B'3 (p) ==

Its reference frequency is

sP----E--v[- m_.p + .,_ . i;,; Spv - spy ]"

_= --=---- == - ,)-_ -- nl_'. r -Jr- _ _ '"

The frequency col,as also the frequency co2, is proportional to air density and flight velocity.

The amplification factor to link III is

k._ -- _.: ry r; I

V (m_m:'7'"--m_m_yGx) "

The differentiating link V of second order with transfer function

has a reference frequency

pSV lm'°x

nWac_yz pSV g )2 2m p+--[-rn_

The amplification factor of this link is

/g_,= l__g ,,7/a
_2 l Y'
,ry

5_

The relative damping coefficient _5 can be written in the following form:

q = - c",pvs ,.,_, = l
2m 2g --m$y" _s,_

----- C_z.

As can be seen from these formulas, the reference freq'aency of link V does not depend on air density and
flight velocity.

The coefficient _s increases with increasing velocity, and decreases with increasing altitude,i.e., it de-

teriorates with increasing altitude. It is ve D, small, and the link is practicallya harmonic link.

In old airplanes with small flight velocity, the frequencies of all the links I - III were small in comparison

x_ith the frequency of link V. Therefore, for old airplanes link V could be considered to be purely amplifying with

the amplification factor
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Inotherwords,foroldairplaneswecoulddisregardthemixedderivativeM_/x. Forcontemporaryair-
planes,asaresultoftheir higher velocity, the frequencies of links I and l[I are comparable with the frequency

of link V. Therefore, this link can not be considered now as being purel) amplifying. This fact explains the

instruction, frequently encountered in the literature, that for contemporary airplanes it is necessa_ to consider

the angle between the principal axis of inertia and the velocity vector, because this angle influences the value

w x (see Appendix II) [2].of M_

Now let us consider the control links. The transfer function of link ¢I can be expressed in following form:

s, , s, v' S:V(.,; :.w,@)=,n_.  gov o _... ,.

=£[<.,+,.':.-m'.,,,+]y t y Z¢ "

Since the value of , /tt_ ;t C'_z is .usually. . larger than_ the value of m:',, U::/z ' this link is a stable differentiating

link. Normally the difference lp;_ c_,'t --#t"/:C_ is small, and therefore the reference frequency of link IV
' z

is also small:

1",: .: m_ 3
y

As can be seen from this expression, the reference frequency of link VI de :teases, with increase of altitude,

proportionately to the density 0 and increases proportionately to the veloe ty V.

The amplification factor of link VI is

I, (ma,c:. -m_.d)

Frorn this relation it can be seen that k 6 decreases as p2 with increa;e in altitude of flight, and increases

proportionately to the cube of velocity, VJ.

The transfer function of link VII can be written as

W.(p)=m_:,77, pV _ p-c_• :% -'-2.;-)=,.;,-_:_:_ - p-ly . -_ l"

This expression shows that thereferencefrequency of link VII is

oaT_ --C_ l .

Therefore, with increase of flight velocity coI decreases proportionately to he density p and increases proportion-

ately to flight velocity V. The amplification factor of link VII is

k_= n_'3c _. "-*
--t Y _ r2.z 2 .

This coefficient decreases proportionately to p and increases proportionatey to V I.
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In contenlpcrary airplanes, usually, the value of t_lrv) is close to zero. Therefore(asintheaboveexample)

we can disregard link VII. It is possible that we will l_ave to consKler tt at very high flight velocities in the

case of ailerons for which the quantity tn_y3740.

The transfer function of the differentiating link VII of second order can be wrinen as

( - l'SpV - !'S_-Vcos°_ g _)')t'--W_ (p)= sht _1,_-+ -- m'(_,-- sin _ + • +--- cos
•' 4Jy m3, t 4J.v V ,

e cos_,(,._,z's_v - r.'s¢ )-- t-7 .tJ_,- +,n_.,- -4.r,, tg ,_ =

[mr ]sinap"+ i£,(--mi"_'sinv+mT'c°s_)" + t7 c°sl} P--

Lr cos I) - -

-- T- -2_,r_ (m_y + nz'_,'.,tg It).

When c_ = O, one root of the polynomial W s (p) becks m. As a result, link VIII becomes a differenti-

ating link of first order. In this case the transfer function has the form

( 1 ; , a_ )_' v >,-_,Ws(p)= 2Trl_- m,., T V COSl",, g cos:_

The reference frequency of link VIII in this case is

,,; ,_ )Im_,'_' + m,, tg .

I

I i g cos:_ my _ , m'_'_ tgl)

%=T7_= l . __v 2, i_
1 m _' g

2",r;

= _ %-- psv
.... t'OS _ _ -- 'I Ill V 1

V 4m r "_,

From this forlnula it follows that the reference frequency of the link depends on density p and velocity

V in a complicated manner. For example, if in the denominator we can neglect the second term
",S l"

#t(', then the reference frequency varies proportionately to pV. On the other hand, if we could dis-

regard the lirst member (at very, high velocities), the reference frequency varies in inverse proportion to velo-

city and does not depend upon O.

In the case, when the angle of attack c_ is not zero, but is small, the transfer function Ws(p) has two

real roots and link VIII can be expressed in the form of two links of second order in tandem. In this case, the

roots of the transfer function can be approximately ex0ressed by the formulas

t'p_=-- m .cos,, +-_--- cos I)
V sin a '

g m_,Y cos _+ m'vr sin _t

2_ ry - V

and the ,'ransfer functions of the two laHdem-conlmcted links will he

1 m;',.cosa+ g
I15"_(p) = sin _tp + 2TI?_-_ _- cos O,

g m'_Ycos{I t- m 7' sin[_

u";{P)=P-_,vT_ _ e



Until the reference trequelJcy of liHI, VIII'. which equals

= m/cosa + -g cosO

is large (as a result of tile smallness of sm cz) link VIII' call be consider::d to be purely amplifying with amplifi-
cation factor

I

k;=  -cos0.

In this case the sequence of links VIII' and VIII" is practically e<uivalent to a single link with the trans-

fer function Ws (p), which is obtained at c_ = O.

With increase of the attack angle the frequency of link VIII' dect _ases and'can become commensurate

with the frequency of link VIII. In this case it is necessary to conduct _n analysis of the transfer tunction

"_'8 (P) with actual figures.

Let us note that the angle c_ can reach large values. Let us also remind ourselves that we are reckoning

thenn_gleofattackfromtheprincipalaxisofinertia(see Section4). When the principal axis of inertia is deflected

downwards considerably (such deflection in particular eases can reach a magnitude of the order of lfi-20°l,and

the angle of attack relative to the longitudinal axis (or the wing chord) hasa value of the order of 10 °. then

the angle of attack relative to the principal axis of inertia can reach 2g-30".

The am?lification factor of link VIII in all cases is

g (rn_)COSO --StoOl = gpS -
k_= _+,'r_ +my_ -4,,_---_-y ( - m_', cos I_-- m'°, sin{});y

it does not depend on the velocity V and varies proportionately to the c ensity p.

Even the brief analysis presented above shows that the transfer fui:ction W s (p) depends on the flight re-

gime, aerodynam!c parameters, and design parameters (for example, th: angle of inclination of the principal

axis of inertia) in a very complicated way. This fact explains the corn I licated change of the angle of sideslip

during transient processes, because it is the transfer function W8 (p) which detennmes _.

_ection 6. Transfer Functions of Control. Simplifi(ation of Equations of Motion

and Transfer Functions.

The ,tabilization loop (system of linksI - V) can be convenientl I opened after link V. The transfer func-

tion of the opened loop has the form

W (p) _- -- W, (p) W, (p) W, (p) W+(I') W_ (p).

The characteristic eqtEation for an airplane with fixed controls wi:l be

v it +W(p)l=O"
P W, (p) 1175 (p) = g', (P) w_ (,+)IV_ (p) IVs (p)

It is easy to co,_finn that this equation agrees with the usnal equalion obtained by classical methods. In

particular, the tem_ not containing _p in the characteristic equation is

a4 = _---' cos _l.a4,:,.
V

There'lorq, a necessary condition for stability (condition of absenc,: of aperiodic instability), will be the
usual condition

(14m_ ),

th:_t is, the condition k2<0 , where k 2 is the atnplification factor of link I:.
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Havilrg the transfer function of an opened system, we can apply well-known frequency me thods [3] to

the analysis of stability.

The equation of motion (4.2) can be written in abbreviated form in the following manner:

%,= w, (p) I_<;(p)f + w_ (p) %+ w',_(p) b,l,

From this, by solving the equation for 7 and toy, we obtain

(6.1)

W,(r) W: (p) w,,(p) - [ -_ /---- _ - , /
P'I Wa(1g --- _ £_ ZY_ __y _<,_ ;n +

1 -! IV (p)

u", (p) W:(p) Ir';(r)-_ )(- g,, - %;7 5, J
1 t-W(p)

(6.2)

IM:!,, aC ,_,_,,,',,,;],<(,o t ,, j: !

%= 1['_ (p) ......... l._-w (p) - ...... _n +

l'M_,,M,], M_,,M,;\
_r-:(p)- ll,.(n u', (.)iv:,(,,)_ );- -)-7-- -.L- ),. ]

+ tr,; (p) _a.
1 _ w(r)

Formulas (6.2) give the transfer functions relating y and COy to6 H and _)3 " Having the frequency

characteristics of the links, we can easily construct the frequency characteristics of the control system, by

using the well-known diagram [3] which allows us to construct the frequency characteristic of a closed system,

when the frequency characteristic of the open system is known. However, here we lose clarity and simplicity.

Therefore, a simplified theory of the transfer functions of the control system will be given later, based on the

fact that frequencies of the individual links are very far apart (Section 5).

In Section 5, we have seen that the reference frequency of link II is usually considerably lower than the

frequency of the rest of the links. Therefore, in the slow motion we can consider links I, HI and V as purely

amplifying; on this basis we can write the transfer functions as

1
W_(p) = let =

z r' (M:y,,,,_'x) a,_, cos0,ZYV )V r )_-tg[t Jy cos_i

't:'2 (p)= --( 3'! M_,tgl))p_ a,,0,
, .Ix Jy

1

,ly dx Yx Yy

1
w_ (p)- ,

P

k g 31_,',.r./.:,(p) = :,....... cos o.
V Jy

Now the transfer function of the open system _:ill be
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P

I + W(p) ---- k]_sh_W_(p)+p
P

From this we obtain (6.2)

=ka ...... ' Jx Jy Jy Jx , _H+
' r -- k_ksk_W_ (P)

+k._ .....................
p -- kiksksW, z (?)

o*y --= k I Jy ly J •
p -- _lkaksW_ (P)

p -- klkBk..,W 2 (P)

The equations of motion (6.1) will lake the forln

(6.:_)

p_= k_u_;(p)..,- . _ Z .'i J, s, \ L J, J, J. - °""

E_(uations ((;.3), as also Equations (6.4), show that m the slow metier the airplane can be regarded as an

,brect of first order. This fact, which has been known before, receives a Lrm _heoretical basis in this work.

The theoQ, allows us to calculate very easily the time constant of such an :_bject. It equals

7".= _ ( )/- _;- '_"
k_k_k_a4,o a(.o

We do not cite a complete expanded expression for Tin, since it is v :ry complex. For our example

(II 12 kin) the time constant Tm is very large(Tin=--%300 sect and the *irplane is practically neutral.

For the same aerodynamic data given in Section 5 (H = 12 kin), we _,ill obtain

"I .... 0,615 _p12_o,oj.;'__5p T !,_ _'H 3,_ _,
p -- 0,000137 p -- 0,{_-0137

%= -0,327 pz4-O,OI75p40,1148 _,_-I-- 0,157 __:_.
p -- 0,000137 p _ 0,00,)137

A_tt_i_ exatnple shows, the quadratic pol,,nomials ii) the numerator canbe practically considered as

being co_stant at 1o_, fretluencies. In other word% in Formula (6.1) we car consider

lg:_(p) = W_ (p) = O.
[:illal)._, we ',la_e

my

k_ks
k,_ J. _, J, J_, _,, *'kZ J-T-J, .,./

I_a, (t;.a')
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It is easily seen that Formulas(6.3') will be obtained if in the last two equations (moment equations) of

the system of equations of motion (4.1) it is assumed that p -= 0 (that is, we assume that tile moments are statically

balanced), and in the force equation we disregard the term p sin c_y.

Most contemporary airplanes are nearly aperiodically neutral; for a neutral airplane c(4, 0 = 0 and the

transfer function W z (p) equals

/ MP MP \

Therefore, Equations (6.3) will assume the fonn

P

(6.5_

p) and W.t (p) in the slow motion; finally

/ _ ?d 3t AI '_MP _u nap \ *$ 1_ a_ $
""_ 22_ I . t_*___.zz _22_.:.._

.___.._ _' Z 6 s_ s,,, t _,,_ "t,l+ s,. ¢,.,/,,I ±_. (6._)

Formulas (6.6) siaow that in this case the airplane is an object of zero order, the derivatives of the basic

kinematic parameters y and COy being absent,

Let us no*e that according to Equation (6.3') in the case of the slow motion we can always consider

=, -- k_k_. T"

In the case ot the rapid motion we can consider that link II is a purely differentiating link with the trans-

fer function

-77+-g-tg o)p.

The transfer function of the opened system will be
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The abbreviated equations of motion will have the form

_o= W,(r) I W_ (p) T+ _v-(p) 8_+ w, =p) _.].

Jy . .

The airplane in this case represents a system of third order.

The second ofthese equations can easily be obtained by writing the moment equation about the neutral

axis of sideslip (Section 4, Equation(4.2))and assuming ¢x4,0 = (i.

The approximate characteristic equation for the rapid motion can 1.e written in the following form:

[ hdPx
tgo]_,; (p) = r I1 + W(p)1-0.l

w,(p_w,(p) t-x;.I-7 t, ,. nv,(p)vv,(e)

As the calculations at the end of this section (Table V) show, the roots of this characteristic equation are,
1 1

practically, almost identical to,he roots of the polynomials _;-_-(p_ and Ws_(P) ; this is becausel the amplifica-

tion factor of link V is small in comparison withthe product of the amplification factor_ik_-; as the velocity

increases the difference will also increase.

In other words, for the case of the rapid motion we can approximately consider (see the analogous discussion

in Section :_)

1 +lV(p_-_:l.

Therefore tile transfer function (6.2) can be rewritten in a simpler lorm:

I,-; -- lgq (p)Ir, ,--- + _ tg W,.(p) _,, +o x ' _. ," r J v Jv J.v

-.'77, _-S-__'_-;, .,. .,, ;, .,, i _':_;_l :_'

I ( ) 1- ,tly,, W-, (p) _. +P-_, :lUt (P) AW3(P) pW,,(p) M ¢',' ,'_l_ " .,II_ (6.7)
_l)'_ (p) .Ix -]y Jv J_ , "

[ pW;(p_ (34':, _ _, ,_,,_3 M_ ! (p)-]

In many cases these form.alas can be simplified even more, if we c resider that for the rapid motion we

can assume link VI to be purely differentiating (its reference frequency is small) with the transfer function

W,_(p) = '%"
J_

Al._o, in the first square brackets of the second formula we can freq _ently assume Ws (p) : 0 because

of the smallness of arnplificiation factor ks, Finally, because of the smalLness of the quantity --- we can
J_

assume W-t (p) _ 0.

We now obtain simple formulas for the rapid motion:
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w,,(t,) i 6.8)
,I_ Jy ' I

I

From these formulas it is easily seen that in ttle case of control only by the ailerons (_// =0) we will

obtain the usual expression for the an_le of bank (equation of rolling motion_

g l

y=

I
P] 1' ..... + ...... =-

Jx ,1.,, M;,1

L ,,'_

_a. (6.9)

The angular velocity of yaw in this case will be simply expressed in terms of the angle of bank

%= Wt(p) W (p)_. (6.10_

Because the amplification factor ks is small, the angular velocity of yaw will be insignificant.

In the case of control only with the rudder _(_3 =0) we will have

MJY

%= W_ (p) -)_--PBH, (6._I)

that is, the usual approximate expression of transfer function relating the angular velocity of yaw to the rudder

deflection. For the angle of bank we will obtain the more complicated expression

py = w, (p) (p) - .... :r,

which can be simplified only by, using additional assumptions.

For our case (tt = 12 kin) we have the following numerical expression:

"/ = -- 0,4!36 p'-'--ll,.SOSp--4,61 I .
f,2+0,2,19p 4 2,28 r_- OlD

(6.12)

from which we can see that all the terms in the numerator are significant and in general cannot be disregarded.

From the above it follows that the three investigated types of motion represent a spiral motion (slow

motion), an oscillating motion (rapid motion during steering with the rudder) and a roiling motion (rapid motion

during steering with the ailerons).

For each of the types of motion the method presented, based on an analysis of the block diagram, allows

one easily and simply to write down abbreviated equations of motion.

For the rolling and oscillating motions, in the denominators of the transfer functions we have the poly-

1 1

nomialSwTp) and _; therefore, by setting these polynomials equal to zero we should obtain approximate..,: W3 (P)

values for the roots of the complete, exact characteristic equation: such a calculation was made for our example

(tt - 19 km) and is shown m Table V.



Thecompletecharacteristicequationforthiscasehasthefollowin_form:
p'+ l,.09p , 2,6.)t +3,95p--0,C00549=0.

Calculations show that natural airplane motions are usually charact._rized by two real roots Pl and P2

(p_ is the small root of the characteristic equation and Pl is the large root and a pair of complex roots Ps and

P(-

The root Pl characterizes the rolling motion of the airplane. It shodd be compared with the root of the

1
____ =

equation Ws (p) 0. The natural frequency of link HI for this case equals 1.608, i.e., within an accuracy of

5qo it coincides w4th the exact root of the characteristic equation.

The pair of conjugate complex root Ps,( characterizes the natural a rplane motion and should be com-
1

pared with the roots of the equation Wl (P) - 0.

The frequency corresponding to this pair of roots coincides with frecuency w I of link I with an accuracy

of up to 1.6e7_, and the damping coefficient coincides with the damping coefficient of link I with an accuracy

of up to 14trio.

1

The small root P2 approximately equals pz_- _m; it can be calculated with a very high degree of

accuracy,

TABLE V

Values of roots of character- .Approximate x alues

istic equation, of roots

pj = -- 1,(;95

p.. = 0,000139

P_,4 0,107_1 _')_-- -_ ) ,)_E*

lq -- -- °_3 = - 1,60_

1
p_ :- .... : 6 00()136

T,I/

PJ, .t .... 0,081 ± 1,52"

In this section we have considered various simplifications for the ca_e of a "typical" airplane, which is

nearly aperiodically neutral. A similar analysis and corresponding simpli ications can easily be made for an

arbitrary case when the airplane characteristics are greatly different from the usual ones.

CONCLUSIONS

1. The system of differential equations of perturbed airplane motica ( equations for the variations), for

lotrgttudinal as well as for lateral motion, can be expressed in the form ot a simple single-loop block diagram

with links of first and second order. The signals at the input and output o the links have a definite physical

meaning.

2. The representation of a system of equations as a block diagram allows us to apply, in the investigation

of stability and control problems, contemporary methods of general contr( i theory: frequency methods of com-

pensating net works, circuit analysis, etc.

3. The representation as a block diagram allows us to obtain simpl-" approximate expressions for the trans-

fer functions of the airplane control system depending on the frequency raage of the various types of motion.

In particular, in contrast to existing methods, which give us approximate t:ansfer functions for rapid angular

motions relative to the center of gravity, we can easily obtain approxima e expressions for transfer functions

for the slow motions, connected with displacements of the center of gravity.

4. The representation in the form of a block diagram allows us easily to formulate approximate differen-

tial e_luations for various practical cases.

1

*Roots of the polynomial WI(P)
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APPENDIX I

EQUATIONS OF PERTURBED LATERAL MOTION OF AN AIRPLANE

Because derivations of the equations of lateral motion are presented either in literature which is out of

date [2] or in rare publications having a small circulation, a derivation _ff these "equations is given in this ap-
pendix.

We will use two orthogonal systems of coordinate axes: an earth sys era,and a system rigidly connected with

the airplane. The origin' of both systems is located at the center of gravty of the airplane O (Fig. 13). The

earth axis Oy 0 will be directed vertically upwards, the axes Ox 0 and Oz t - in the horizontaiplane.

The airplane's system of axes will be chosen in such a way that the axis Oz will be directed perpendicularly

to the symmetry plane, and to the right if we are looking in the direction of flight; the axes Ox and Oy will

be located in the symmetry plane of the airplane (axis Ox forward, axis Oy upward).

We will specify the relative orientation of the two coordinate tribe: drons Oxyz and Ox0Y0Z 0 by three angles.

The yaw angle _ will be the angle between the axis Ox 0 and the projection of axis Ox on the horizontal plane

(qraight line Ox'). The pitch angle 8. will be the angle between axis O: and the horizontal plane. The angle

of bank y will be the angle between the airplane symmetry plane and t):e vertical plane which passes through

the axis Ox (in other words, the angle between the axis Oz and the straig at line Oz').

These angles can also be represented in another form. Let us superimpose the airplane trihedron on the

earth trihedron. Let us turn the airplane trihedron through the angle ¢ a _out the vertical axis Oy 0. The axes

Ox 0 and Oz 0 will assume the position Ox' and Oz'. Now let us turn the a rplane about the new axis Oz' through

the angle 8. The axis Ox will assume it final location. By turnmg the a:rplane about the logitudinal axis Ox

through the angle of bank y, we will obtain the final position.

Table VI shows the direction cosines for the transformation from tl:e earth axes to the airplane axes.

TABLE VI

.Axes ()x_ O_V. Ox o

()._ cos t_ cos _ sin:} -- Cos _1sin ,_

I_v sin "i sin ,_ -- COS "t cos ,_ sin ,q cos 7 cos _1 sin "(cos _ ÷ cos 7 sin _ sin ',_

¢)." cos _' sin '_, _ sin 7 cos ,_ sin 0 -- sin 7 cos ',t :os "(cos ,_,-- sin '( sin d?sin 0

From the above it is clear that the angular velocity vector can be _ onsidered as a geometric sum of three

vectors (see Fig. 13): the angular velocity of rotation about the vertical .:_xis Oy0, the magnitude of which is

dt ; the angular velocity of rotation about the straight line Oz', tie magnitude of which is _1 = ....
tit

and the angular velocity of rotation about the longitudinal axis Ox, the rr agnitude of which is k_-dl- . With
: ill

the help of Fig. 13 it is easy to find the projections of the angular velocit : of rotation along the airplane axes:



o, =-_ + 9 ,in '0 ]

.... _ cos I_cos -_+ ',isin % [

% = -- '4'cos ;_sin -g_L 0 cos %

From these form_llas it is easy to derive the inverse formt_las

(I. 1)

'*;t = 0 = % sin 7 + % cos %

dt - [

COS,)

--- = ";' =-=c% -- tg 0 (%,COS -I-- % sin "1").
at !

(1.2)

The velocity vector of the center of gravity, -V, will be oriented relative to the airplane axes by tile

augle of a_tack a and the angle of sideslip 8 in the followiug manner(see Fig. 14); the angle of sidslip 8

_,ill be the angle betwee_ the velocity vector and the symmetry plane of the airplane, the angle of attack c_

g

%

{:ig. l:_. Diagram of the angles of rotation of the co- Fig. 14. Diagram of the angles of attack and side-

ordinate exes during motion of the airplane, slip.

_,iH be the angle between the longitudinal airplane axis Ox and the projection of the velocity vector on the

plaue of L_mmetr'y. From _:ig. 14 it is easy to find the projection of the velocity vector along the airplane

aXCS:

1/x=b e COS_COS=, 1
V,,= -- Vcos _ sin _,

V,= V sin ,_, {

(La)

and also the inverse fomltdas

, ,a== --= #"v,. + + vl.
Vx ' y (1.4)

,after these prelimiuar} consideratior_s, we can proceed to the derivation of the equations of perturbed

lateral motion. We will assume, as has been done in this work, that the airplane coordinate axes are the prin-

,'ipaI axes of inertia. Then the momem equations for the axes Ox and Oy will be written inEulerian form



q_

d,,. ej
J, _ + ,-,-- Jy) %% = M_.

ff_y

Jy _ + (J,-- J,) ,%% = My.

Since the initial motion is assumed to be in the plane oI symmetD', then in the initial motion

_:z tar-- my =_ == O.

In the derivation oflinearized equations of perturbeo lateralmoti3n, the variations of these quantities

are, in the first approximation, equal to the quantities themselves, which are infinitesimally small and of the

first order. Considering this, Equations(I. 1) and (I.3) will assume the fonn(disregarding small quantities of any

order higher than the first);

d'l*

o_ _--dt COS_', i
I

dl d_ _ d'g
%=-- +_sinO----+% tgO. }

dt at dt -' I (1.5)

In Euler's equations we disregard the productSOaxCO z and tOxU0,, a, _ small _tuantities of the second order.

Further, expanding the projections of the moments, M x and My, as _unclions of _, _-, (u _ _;_ _'H' into a

series and considering only terms of first order, we obtain

=, .,'_'_,+3! .m + + +

At,.= M'2,o,+ M';',.,,,+ ,<_ + ,_4;_-:_+ 'W%.

By substituting these expressions and the expression for o2x (I.5) int) Euler's moment equations, we obtain

(4.1).

,, I''''',., + "%',,,tv',t') <, f-'_',,, ,,, tg,,)+ M:,., ._.I_+ M>.:_ ,W%,,= ,., + + +
(1.6)

'I" ,-7 = A'I., \ _-77"-t- % tg . + ,IlyyO% + ,,'_]_,_ + _1£',3_ a .nt- o'lq,&511.

After grouping together the similar terms of this expression, it is e _sy to obtain two of the main Equations

Tim equation of the projection of forces onthe transverse airl_lane _xis has the form:

m(_V_+,,,,v,, -- %V,. =Z--mgcos 0dl . , ,.) _Jll _,

where Z is the projection of aerodynamic forces on the transverse axis 0;.

For infinitesimall\ small disturbances in the lateralmotiont

l z l_, o_ =_o, lg_+ dl.... , V,,=- I." sin _,
" dt

1", ----V cos =, Z = Za_ + Z_s_ ,/*

B) substituting _he obtained expressions into the equation of force l:rojections, we obtain

'_ (% '_ )mV_-- m tgl_ +-_- Vsin:_--m%Vcosa.--_Za}+Z_Z,'_._mgcosIbbdt _ •

. We disregard the dependence of lateral force Z on _Ox,COy and _;'O becau;e of their small influence on it. The

qualntity Z _]! has to be considered because in contemporary airplanes it is equal to 30-50q_ of Zlg.
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froln which, after simple tranfonnations, it is easy to obtain the first of Equations (4.1), when we consider

that .q = 0 + a and, therefore,

, . sin z_sin a +co., I_cos _ co_0
t_d'slne, ]-COSa--_-

COS 1t COS _

Derivation of the equation of force projection on the lateral axis can also be accomplished in another

way which is interesting in itself, since in such a derivation the physical meaning of individual terms becomes

clearer. For this we will find lhe projectious of velocity vector V on the earth axes, by using Formulas (I.3) and

the table of direction cosines:

V ,_--=t', cos (x,.v0) _- _',. cos O',.v0/+ l.': cos (Z,Xo) =

= t'" cos a cos _ cos ;Jcos ._-- V sin _ cos } [sin ";sin '?-- cos _ cos 9 sin ,_)]+

i- I,'sin _ [cos I sin ,?+ s n "rcos 9 sin O],

t,":_= Vcos (x,zo) + i" cos 0,,z0) + V cos (z,.v0) =

= -- Y COS a COS _ COS i) Sill _b -- !.7 Sill a COS tq [sin "r COS 9 q- cos "f sin ,_ sin O] +

+ I'sin _ [cos -gcos _o--sin "rsin q0sin {)].

On the other hand, the same projections can be obtained by projecting the velocity vector directly on

the horizontal plane Ox0z0, and then resolving this projection along the axes Ox 0 and Oz 0. We obtain

V.,= Vcos 0 cos II, V..o=VCosOslnU,

Where II is the path angle, that is, the angle between axis Ox 0 and the projection of the velocity vector on the

horizontal plane; in other words, it is the angle between axis Ox 0 and the tangent to the course on the earth.

Comparing the two groups of formulas it is easy to obtain

cos 0 cos II = cos = cos _tcos Tcos 9 -- sin =cos _ [sin I sin q,-- cos Tcos ,_sin _] +

+ sill _ [COS y Sill _ + sin 1COS 9 sin {}],

cos 0 sill II .... cos _ cos [_ COS I_ sill 9 -- sin a cos _ [sin "_ cos 9 + cos "I sin q stn t_] +

-+- sin O Icos Z cos d?-- sin "_sin t_ sin tt].

From this we obtain the formulas

cos _ cos (q_+ 13)= cos a cos _ cos t) + sin ¢tcos 1_cos "_sin 0 + sin flsin I sin _,)
cos 6 sin (q0+ 1I) = -- sin _tcos _ sin "_+ sin _ cos _. / (I. 7)

With small lateral deviations, when the value of & + II is small, these formulas assume the form

cos 0= cos _ cos 0 + sin _ sin 0,

(9 + I1)cos 0,='_ sin _ + _.

The first of these formulas gives us the well-known relation 0 = 8-- ¢x. The second allows us to obtainIL

]I=--q,+- t __2_.z
cos 0 cos tt T"

The velocity' along the earth course equals the velocity vector projection on the horizontal plane

Vx = V cos O.

Therefore, the normal acceleration during motion along the course equals

dll Vcos0l__ftt_ + 1 d, sl_nn, d'f]==__ Vco$0 d_+ V d_ __Vg|ll0t d..._.I'V'n = Vt )7 = cos 0 dt cos6 dt d"_ dt"



Because -- ==
d! cos 8

(Equation 1.5), then finally

W,=- V ¢o.s0 ,t_ a_
cos,_ %+V---- Vslna --." dt (It

From this, it is easy to obtain the lateral force equation

cos 0 Sin er dl ]cos _ TT. = Z_ + ZBuBt_ -- mg cos {}_.

APPENDIX II

FORMULAS FOR TRANSFORMING LATERAL ROTA FIONAL DERIVATIVES

TO THE NEW COORDINATE *_XES

In this work the principal axes of inertia of the airplane are taken as the coordinate axes. At the same

time, the static and rotational derivatives are usually calculated or determined experimentally in wind tunnels

relative to the velocity axes. Therefore, in this appendix we present fornalas for transforming the rotational

derivatives for lateral morion in a rotation of the coordinate axes.

Let us denote the initial axes (Fig. 18) by' x and x£, and the coordirate axis rotated through the angle _0,

by x' and )'. The projections of the vectors of angular velocity to and lateral force moment _ on the coordinate

axes x', y' will be

M_-----m. cos, + M, sin %

toi_ -----w. COS _ + % sin _, M; = - a4,_sin ? + M, cos q,, }
w' ,=, --%rSln_+%Ctm _.]r

(II.1)

In the tuture, all guantities referred to the new axes will be distingaished by a prime (for example w'x).

With these designations we will obtain the following trandormation form tlas for the rotational derivatives

'v11'' ="_r"c°_:'e+('_ri'"-!"vri"")c°s*<"?+al"Tsin__' I
._.; ' :, =,u i_co._: -_-+ (,_4'(?- ._C,.) cos _ .<n .,-,,_ t'(_.<,,-' % ,

(II.2)

._li' =_ui,cos:_+ (,_-a,l'i',)cos-_si,_ /,l'i,.sin,_, [

I
34 "=,$_("cos:? - (.ll'i" -}- ,U",) cos -¢ sin .,_ +& '", sil_e .L j

Let us derive tim lirst two formulas. In order to do that, let us note that the projection on the axis x'

of thai part of the Umli_Cnt which results from the angular velocity, equa]_: on one hand (we are considering

only the part of the moment which is caused by, angular velocity of rotatian)

M,=M I ,o,-_-34/'_'o, :-'Vl "('.,,,cos_-!-_o sii_T)+M "'"(--_o sin._+%.cos_),

oH the other !land

_ =__u c,,s .++ .vr s:_, .: = {M;-,-.,, -÷ ,_L,'_, ) cos ? + {B4';,-_,,,,-!-aq.',%) sin .._.

CoHg.aring thc cocllicieitts of cox and to}. in both expressions, we obtain



,ad'"" cos _ --M'"'>' sin ? = M_', cos ',-"+ A/I," sin _.

,1'I'_' sin _ + ,1,I'"'" cos ".;= M'"" cos '? + AI'I,'" sin ?.

Solving these equations for M'xWX and MkC°'y, it is easy to obtain tile first two formulas of(II. 2); in an analog-

ous fashion we obtain the two second formulas by comparing two expressions for My'. The dimensionless coeffici-

ents involving the rotational derivatives can also be transformed by the same formulas.

(t)g

Fig. 15.

Transformations according to Formulas (IL2) can be simplified, if it is taken i_to accotmt that the trans-

fon_a_ion to the new axes through formulas (II.g) has the two invariant_

/,=_F "',+M "',._-_m 7, _-.'_L.',',

,/., M"M,"" M",,H I .H',,_/°,--,_F',z_I I' (II.3)

In the transformation Formulas(II.2) for small angles _, when sin _p is small in comparison with cost,,

the ,r_rincipaI variable _ermscu, are the second terms,., with the multipliers cos _ sin 9_. Since Mt_ x is usually_,,con-
M_,', and My"_ is even smaller, then in the transformation the value of MvX;qderahl} larger than M v} and

changes more than the others; depending on the value of angle 9_ it can even change its sign.

The result of converting the rotational derivatives cited in secti.on /5 to new axes, inclined to the old axes

by the angle _2 - _ 15 °, is given m Table VII.

TABLE VII

-- 15 ° 0 + l 5 °

,,_:y

--0,.34'2

--0,120

--0,059

--0,'2-43

--0,390

--0, 125

-----0,020

-0,195

I

--0,413

--0,110

0,039

--0,172
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It can be seen clearly from this table that the quantity my_ underfoes the greatest cbange. This quantity

even changes sign.

The remaining quantities are changed relatively little. We note tlat it isjust this coefficient my x which

determines the characteristics of link V, and, in particular, the value of he reference frequency co5 (see Section

5}. Consequently, in contemporary subsonic airplanes, and in supersonic airplanes even more, the angle of in-

clination of the axis of inertia has a large effect on the stability characu ristics.

When converting from velocity axes to principal axes, the angle _0 = -c_. where c_ is the angle of attack,

that is, the angle between the flight velocity vector and the principal ax s of inertia.
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